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Anomalous behavior of the contact process with aging
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The effect of power-law aging on a contact process is studied by simulation and using a mean-field ap-
proach. The introduced type of aging accounts for, e.g., the growth of the virus fitti&smfection). We find
that the system may approach its stationary state in a nontrivial, nonmonotonous way. For the particular value
of the aging exponentt=1 we observe a rich set of behaviors: depending on the process parameters, the
relaxation to the stationary state proceeds astbirvia a power law with a nonuniversal exponent. Simulation
results suggest that for<0ae<1, the absorbing-state phase transition is in the universality class of directed
percolation.
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The study of systems with absorbing-state phase transthe time derivative of the particle density may change sign
tions has been a topic of intense research in recent yeatiiring the evolution. The case of the aging exponreegual
[1-3]. Among these systems, the contact prodgR), in-  to one is especially interesting. In this marginal situation, in
troduced by Harrig4] as a toy model for spreading of dis- @ mean-field approach, we find different types of behavior.
ease, has become the prototype mdéel9]. In fact, itis a  Depending on the parameters of the system, the density of
dynamical version of directed percolatiyB,10—1§. One  particles changes at long times according to a power law
should note that effects of aging, in the particular case ofvith nonuniversal exponents, or proportional to 1/ISuch
spreading of diseases were considered by Bernplilj a  slow relaxation is certainly not typical of absorbing-state
long time ago. Nevertheless, importance of one factor waghase transitions with a unique absorbing state. At their criti-
realized only recently. It is clear now that because of a fasgal point, relaxation normally follows a power lg\®,3].
mutation rate a virus becomes more resistant. The most strik- We simulate the aging contact proce#€CP) using se-
ing example of such behavior is demonstrated by the HI\guential dynamics. Each site of the one-dimensional lattice
infection due to rapid replication of this vird8—21. In  may be empty or filled by one particle. At each unit of time
this respect, an “old guy” is “stronger” than a young one. a particle is chosen at random. We decide to annihilate this
[Of course, it is impossible to ascribe age directly to a rapJarticle (a) or create a new ong) with probabilitiesP ,(s)
idly replicated virus but it is quite reasonable to speak about 1[1+p(s+1)*] or P(s)=p(s+1)/[1+p(s+1)“]
the time passed after the instant when a particular cell wasorrespondingly. Heres is the age of the particle and is
infected and a new virus lineagstrain appeared21]. All the aging exponent. In the case of annihilatica), the par-
this time the infection is under permanent attacks of the imiicle is deleted and we proceed to the next step increasing
mune system and drugsSociology—evolution of vox  time by one unit. In casé), we chose one of two nearest-
populi—provides another example of a similar effect. After aneighbor sites with equal probability. If this site is filled,
person becomes set in his ways, nothing may change higreation is impossible, and we increase time and proceed to
beliefs. Therefore, aged opinions are more survivable thathe next step. If it is empty, we create a new particle at this
new ones. In our paper, we study the effect of the mentionedite, increase time, and pass to the next step. Thus, as com-
factor on the simple contact process with a single absorbingared with the ordinary CP, we introduce the age-dependent
state, i.e., we consider the simplest idealized situation. probabilitiesP,(s) and P.(s). For «>0, the case studied

Recently, much effort has been directed toward generalhere, P,(s) tends to zero andP.(s) approaches 1 at long
izing the original models of absorbing-state phase transitionimes. According to the introduced rules, an “old guy” is
by introducing many absorbing states, and toward findingcertainly “stronger” than a young one.
paths to self-organized critical phenomdi22—-24]. There- The process is started with a random configuration of par-
fore, one can hardly expect that an ordinary CP will reveaticles. Simulation times are about ®l®onte Carlo steps.
striking features. Nevertheless, in the present paper, we derithe lattice size is taken up to 4Gites, to minimize the
onstrate that even the simple CP with a single absorbing stafeuctuations of the particle density(t), which is the main
shows anomalous behavior if one introduces such aging intquantity of interest. The simulation results are presented in
the model. Figs. 1-3. First, one sees that at eackalue studiedn(t)

We show that the system with power-law aging, before itmay behave nonmonotonically, depending on the initial con-
approaches its stationary state, behaves nonmonotonousbjitions and parameters of the process. If, for instance, the

stationary state is(~)=1 (see Figs. 2 and)3the density

may first decay nearly to zero, stay in this range for a long
*Electronic address: sdorogov@fc.up.pt time, and only approach the(«<)=1 much later. Fre-
"Electronic address: jfmendes@fc.up.pt quently, it is only with long-time simulations that we can
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) . FIG. 3. Temporal evolution of the particle densitft) for three
FIG. 1. Log-log plot of the stationary densityvs p—p. fortwo  different values of p and a=1. From top to below, p
different values of the aging exponent 0.25 and 0.75. The critical =065, 0.6667, and 0.75.

points arep(0.25)=2.3419(3) ang(0.75)=1.10143). Thefull
line has a slope corresponding to tBeexponent of DP in the 41 B is not o dependent, and agrees with the directed percola-
dimension. The inset shows the evolutionngf) for different val-  tion value, 8=0.277. Whena>1, the phase transition is
ues ofp (from top to below,p=2.5, 2.4, 2.36, and 2.3423) and absent and the only possible stationary stat@(i®)=1;
a=0.25. after a linear growth, the system approaches this vedee
Fig. 2.

observe the final stage of the relaxation. Such behavior re- In the marginal caser=1, we observe a complicated,
sembles a typical course of the HIV infection: after the pri-Slow evolution with several temporal regimes characterized
mary infection peak, the level of infected cells stays low forby different behaviors. Due to the slow relaxation, it is dif-
many years until the final development of the disease. ficult to fix the final state. In Fig. 3 we present the results for

Second, in the case of<Ow<1, the critical characteris- the temporal evolution of the particle density for several val-
tics are the same as for the contact process without aging€S of the parametey. Depending orp, different types of
i.e., @=0. In Fig. 1, we show the stationary-particle density tN€ evolution are observed. . _ _
as a function of the deviation from the critical pojpg for L€t us present the simplest possible mean-field descrip-
two different values of the aging exponent=0.25 and tion of the AQP. Wh|le thel model is even simpler than'that
0.75. In both cases the data suggest that the critical exponeH?ed in our simulations, it is reasonable to expect that it can
explain the principal features observed in the latter. As in the
ordinary CP, each site of a lattice may be filled by one par-
ticle or be empty. Each particle has its ageAt each incre-
ment of time, all lattice sites are updated according to the
following rules. (i) The probability for a particle of ageto
die at the next instant ipg, irrespective of its environment.
(i) The probability for a particle to survive until the next
update is therefore-1 ps. (iii) The probability that a particle
will be born at an empty site in the next instant is
(1/n5)2i”£1qs(i), whereng is the total number of nearest-
neighbor sites, andg is the total number of particles at such
sites.s(i) is the age of the particle at site(iv) The prob-
ability for an empty site to remain empty until the next up-
date is therefore 4 (1/ng) =, qy;) . In this way we present
a natural generalization of the CP, introducing age-
dependent death and birth probabilitigs,and g, respec-
107G i L 6 tively.

10 10 10 Let us derive the mean-field equations, introducing the
following quantities: the total number of particles at tite

—_
(=]

t

FIG. 2. Evolution ofn(t) for different values ofp and initial ~ Ni=¢_ods, Wherea, s is the number of particles of the
densities, fora=2. From top to belowp=0.075, ny=0.01; p ages at timet. The initial condition isay,=n(0), where
=0.075, ng=0.25; p=0.05, ng=0.05; andp=0.1, ng=0.01. n(0) is the initial number of particles.
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Since the only possibility for an old particles¥0) to an(t) ) t
survive is procesdii), the first equation isa;,q1¢s1=(1 —r —La—p®In)—agn (t)+QJOdS ns)[1-n(s)]
—psays, i-e., afraction (+pg) of the particles with ags
survive. One may verify the solutioatyszat,syoﬂﬁ;%(l t-s
—pu) , wherell; *,=1 by definition. x[p(t)—p(t—s)]exr{ 1, du p(u)
We demonstrate the derivation of the second equation in
the simplest case of only two nearest-neighboring sibee  Equation(6) may be also obtained by differentiating E§).
may show that other coordination numbers lead to the sami¢ we set p=const, Eq.(6) reduces to the usual equation
equation. Particles are only created via procéss. Hence, [2,3] for the CP without aging. We write out the known
. results on linear relaxation for it for later comparisonpif
dstdu ds >q, n(»)=0 and n(t)e exg—(p—g)t]; for p<qg, n(=)
at+1,0~ (1- nt)s,UE:O at,sat,uT +2(1- nt)ZSZO ats > - =1-p/g and n(t)—n(x)xexgd—(q—p)t]; and at p=q,
(1) n(t)oc 1.
The reasonable dependences ffs) and q(s), which
Thus, admit comparison with our simulations, are the following:
p(s) decreases gradually as the particle agecreases, and
! q(s) increases withs increasing or is constant. Here, we
at+1,o=(1—nt)520 ay,sls - (20 consider the annihilation probabilityp(s)=c(s+ty) %,
- where « is the aging exponent. The constaniplays the

71 . . .
The previous equations describe completely the ACP in thé2@Me role as the paramefer - in our simulations. One can
mean-field approach. check that, in the particular case @0, i.e., when creation

Applying Eizo to our first mean-field equation one ob- of particles is gbsent, E@5) is valid for any dimension, and
taiNS N, 1~ Ny= 8, 10— S'_oPsdrs. Taking Eq.(2) into ac- exact. In thS case,l_aat Qa<l, n(t) 1riu;)proaches
count, we immediately obtain the equation generalizing th&€0:  N(1)=n(0)exity “/(1—a)lexg—(t+t)" “/(1-a)l,
usual mean-field equation for the CP without aging, at a>1, n(t) cl‘i'Ckly approaches a constant valog)
=n(0)exd—cty /(a—1)}, and, for a=1, n(t)

. (6)

t

t =n(0)ty/(t+1p).
Niy1—Ne= > ag [ (1—ny)os—ps] - (3) Equation(5) may be easily solved by iteration. One may
s=0 start, e.g., frorn@(t)=n(0). Theresulting solution:(t)

re very similar to those obtained by numerical simulation;
e do not present these curves here, but only describe the
results of the direct analysis of E).
First of all, expanding Eq(5) for smallt one finds that

Now we see that all quantities may be expressed throug
thea, o, i.e., through the number of particles born at instant
t. The equation for this variable follows from E(),

t s—1
At11,0™ 1_2 at—s,OH (1_pu)} Jn(0) 3
=T ——=n(0){a[1-n(0)]~cty}. )
t s—1
X > at—s,Oqu (1-py) . (4 [One may check that this relation is also valid for an
s=0 u=0 s-dependenty(s) if one replacesy by g(0).] Hence,n(t)

may increase or decrease frarfD) at short times depending

_ Formally speaking, Eq(4) together with the initial con- — op 3 particular relation between the constants of the problem
dition, define the solution of our problem. But the problem is;nd on the initial condition. In principle, the sign of the

still too difficult for analytical treatment. Here we consider yarivative is independent of the valugx). That leads to
only the simplest case af=const and ars-dependenpg. the observed nonmonotonic behaviormgt).
Let us pass to the continuous limit. Inserting the expression The nonmonotonous behavior observed in some regimes
for a, s into the definition ofn;, we get the following closed-  an pe intuitively understood regarding that in the very be-
integral equation for the total number of particles. ginning the particles are by necessity young, so most of them
easily die off, but later the survivors turn to be nearly im-
t t . . . . .
n(t)=n(0)exp{—f ds p(s) +qJ' dsn(s)[1—n(s)] mortal, and the Iatthe will be filled up with oId-tlmers.
0 0 Let us now consider the behavior aft) for different
s values ofa at long times[Note that all the following as-
Xex;{ _ f du p(u) (5) ymptotes_ may be obtained from th(_a Laplac_:e transform of Eq.
0 (5) linearized near the corresponding stationary sfate.
Regime | 0<a<1. The situation is very similar to the
One may rewrite Eq(3) in the following form:n..;  CP without aging. There is a critical poiet (a,q,ty) for
—n=(gq— pt)nt—qnt2+ E‘S=0(pt— Ps)a; s. Inserting the ex-  each value ofr andg. At c>c*(«,q,tg), Nn(*)=0 andn(t)
pression fora;  and passing to the continuous limit, one has an exponentional approach to the stationary state. At the
obtains critical point, c=c*(«,q,ty), n(t) relaxes to zero by a
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power law, n(t)ec1l/. At c<c*(a,q,tp), at long times,
n(t) approaches n(<)>0 exponentially, n(t)—n(=)
o« exp{—9g(a,c,q.tp)t}. Here,g(a,c,q,tp) is zero at the critical
point, and also approaches zero whempproaches 1.
Regime I} «>1. For anyc and g, n(t) approaches 1
exponentially. The critical pointand scaling are absent.
The reasons are the following. Atv>1, the Kkernel

exp{— [ydudu-+ty) ¢} quickly decreases to a constant value,
exp{—cty Y(a—1)}, ast grows, and one can substitute this

constant into Eq(5). Taking the derivative of Eq(5) and
linearizing the resulting equation neaf>)=1 we get

1-n(t)x exp{—qexd —cty “ Y(a—1)]t}. (8

PHYSICAL REVIEW &3 046107

The exponents £ c¢ and ¢ are nonuniversalsince c is
simply a coefficient in the definition of the annihilation prob-
ability. Previously, nonuniversality was found in models
with multiple absorbing statd$,6,9,23—2%and in the pro-
cess of spreading in media with memdg6]. Nevertheless,
the kind of nonuniversality observed here was not seen.

One should note that the results fRegime lllwere ob-
tained only in the frame of mean-field theory. We did not
study the role of fluctuations, and cannot estimate their pos-
sible effect[27]. Our simulations do not let us fix the final-
stationary statéexcept for the case(«)=1), when the re-
laxation is slow, i.e., fow=1. Note also that our mean-field
approach is based on parallel dynamics while a sequentional
one was used in the numerical simulations. This difference,
however, seems to be not crucial for the CP with a single

Regime II| a=1, the most intriguing case. Several typesabsorbing state.

of critical behavior are realized for different valuesmf

(@) Forc<1 and anyq, n(«)=1 and the long-time de-
pendence is + n(t)=t~(*~%. Depending on the relation be-
tweenc,q, andty [see Eq.(7)], n(t) exhibits this depen-
dence immediately or, on the contraryt) first decreases,

remains near zero for some time, and then very slowly ap

proaches 1. The kernel ekp[tds p(s)}=[(t+1y)/to] ¢, so if
we demandh(t—=)—1 in Eq. (5), we immediately obtain
such a form for the asymptote.

(b) Forc=1 and anyq, n(«)=1 and the long-time be-
havior is 1—n(t)o1/Int.

(o) For 1<c<1+qtg,
n(t) —n(ee)oct™C,

(d) At c=1+qtg, n(e°)=0 andn(t)«1k. The kernel is a
quickly decreasing function as compared witft), so the
reason for such behavior is the same as for theelaxation
at the critical point at & a<<1.

(e) At c=1+qty [note that the definition gb(s) imposes
the additional restriction on possible valuesméndt,: ¢
<tg], n(°)=0 andn(t)ot™C.

n(«)=1-(c—1)/(qt;) and

In summary, we have studied the influence of power-law
aging on the contact process with a single absorbing state.
The introduced type of aging accounts for, e.g., the growth
of the virus fitness. This is realized in the case of the HIV
infection because of the fast mutation rate due to its rapid
teplication of the virus. Of course, we do not model a real
course of the HIV infection but only consider consequences
of the most important factor, the growth of the virus fitness.
Both simulation and mean-field theory reveal the nonmono-
tonic character of the relaxation. In the marginal case of a
unit-aging exponent, in the frame of the mean-field theory,
we found that the relaxation of the particle density to the
stationary state proceeds by a power-law with a nonuniversal
exponent, or even slower, i.e., proportional to 1/In
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