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Anomalous behavior of the contact process with aging
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The effect of power-law aging on a contact process is studied by simulation and using a mean-field ap-
proach. The introduced type of aging accounts for, e.g., the growth of the virus fitness~HIV infection!. We find
that the system may approach its stationary state in a nontrivial, nonmonotonous way. For the particular value
of the aging exponenta51 we observe a rich set of behaviors: depending on the process parameters, the
relaxation to the stationary state proceeds as 1/lnt or via a power law with a nonuniversal exponent. Simulation
results suggest that for 0,a,1, the absorbing-state phase transition is in the universality class of directed
percolation.
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The study of systems with absorbing-state phase tra
tions has been a topic of intense research in recent y
@1–3#. Among these systems, the contact process~CP!, in-
troduced by Harris@4# as a toy model for spreading of dis
ease, has become the prototype model@5–9#. In fact, it is a
dynamical version of directed percolation@3,10–16#. One
should note that effects of aging, in the particular case
spreading of diseases were considered by Bernoulli@17# a
long time ago. Nevertheless, importance of one factor w
realized only recently. It is clear now that because of a f
mutation rate a virus becomes more resistant. The most s
ing example of such behavior is demonstrated by the H
infection due to rapid replication of this virus@18–21#. In
this respect, an ‘‘old guy’’ is ‘‘stronger’’ than a young one
@Of course, it is impossible to ascribe age directly to a r
idly replicated virus but it is quite reasonable to speak ab
the time passed after the instant when a particular cell
infected and a new virus lineage~strain! appeared@21#. All
this time the infection is under permanent attacks of the
mune system and drugs.# Sociology—evolution of vox
populi—provides another example of a similar effect. Afte
person becomes set in his ways, nothing may change
beliefs. Therefore, aged opinions are more survivable t
new ones. In our paper, we study the effect of the mentio
factor on the simple contact process with a single absorb
state, i.e., we consider the simplest idealized situation.

Recently, much effort has been directed toward gene
izing the original models of absorbing-state phase transiti
by introducing many absorbing states, and toward find
paths to self-organized critical phenomena@22–24#. There-
fore, one can hardly expect that an ordinary CP will rev
striking features. Nevertheless, in the present paper, we d
onstrate that even the simple CP with a single absorbing s
shows anomalous behavior if one introduces such aging
the model.

We show that the system with power-law aging, before
approaches its stationary state, behaves nonmonotono
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the time derivative of the particle density may change s
during the evolution. The case of the aging exponenta equal
to one is especially interesting. In this marginal situation,
a mean-field approach, we find different types of behav
Depending on the parameters of the system, the densit
particles changes at long times according to a power
with nonuniversal exponents, or proportional to 1/lnt. Such
slow relaxation is certainly not typical of absorbing-sta
phase transitions with a unique absorbing state. At their c
cal point, relaxation normally follows a power law@2,3#.

We simulate the aging contact process~ACP! using se-
quential dynamics. Each site of the one-dimensional lat
may be empty or filled by one particle. At each unit of tim
a particle is chosen at random. We decide to annihilate
particle ~a! or create a new one~b! with probabilitiesPa(s)
51/@11p(s11)a# or Pc(s)5p(s11)a/@11p(s11)a#
correspondingly. Here,s is the age of the particle anda is
the aging exponent. In the case of annihilation,~a!, the par-
ticle is deleted and we proceed to the next step increa
time by one unit. In case~b!, we chose one of two neares
neighbor sites with equal probability. If this site is filled
creation is impossible, and we increase time and procee
the next step. If it is empty, we create a new particle at t
site, increase time, and pass to the next step. Thus, as
pared with the ordinary CP, we introduce the age-depend
probabilitiesPa(s) and Pc(s). For a.0, the case studied
here, Pa(s) tends to zero andPc(s) approaches 1 at long
times. According to the introduced rules, an ‘‘old guy’’
certainly ‘‘stronger’’ than a young one.

The process is started with a random configuration of p
ticles. Simulation times are about 108 Monte Carlo steps.
The lattice size is taken up to 106 sites, to minimize the
fluctuations of the particle densityn(t), which is the main
quantity of interest. The simulation results are presented
Figs. 1–3. First, one sees that at eacha value studied,n(t)
may behave nonmonotonically, depending on the initial c
ditions and parameters of the process. If, for instance,
stationary state isn(`)51 ~see Figs. 2 and 3!, the density
may first decay nearly to zero, stay in this range for a lo
time, and only approach then(`)51 much later. Fre-
quently, it is only with long-time simulations that we ca
©2001 The American Physical Society07-1
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observe the final stage of the relaxation. Such behavior
sembles a typical course of the HIV infection: after the p
mary infection peak, the level of infected cells stays low
many years until the final development of the disease.

Second, in the case of 0,a,1, the critical characteris
tics are the same as for the contact process without ag
i.e., a50. In Fig. 1, we show the stationary-particle dens
as a function of the deviation from the critical pointpc for
two different values of the aging exponent,a50.25 and
0.75. In both cases the data suggest that the critical expo

FIG. 1. Log-log plot of the stationary densityr vs p2pc for two
different values of the aging exponenta, 0.25 and 0.75. The critica
points arepc(0.25)52.3419(3) andpc(0.75)51.1014(3). Thefull
line has a slope corresponding to theb exponent of DP in the 111
dimension. The inset shows the evolution ofn(t) for different val-
ues ofp ~from top to below,p52.5, 2.4, 2.36, and 2.3423) an
a50.25.

FIG. 2. Evolution ofn(t) for different values ofp and initial
densities, fora52. From top to below,p50.075, n050.01; p
50.075, n050.25; p50.05, n050.05; andp50.1, n050.01.
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b is not a dependent, and agrees with the directed perco
tion value, b.0.277. Whena.1, the phase transition is
absent and the only possible stationary state isn(`)51;
after a linear growth, the system approaches this value~see
Fig. 2!.

In the marginal casea51, we observe a complicated
slow evolution with several temporal regimes characteriz
by different behaviors. Due to the slow relaxation, it is d
ficult to fix the final state. In Fig. 3 we present the results
the temporal evolution of the particle density for several v
ues of the parameterp. Depending onp, different types of
the evolution are observed.

Let us present the simplest possible mean-field desc
tion of the ACP. While the model is even simpler than th
used in our simulations, it is reasonable to expect that it
explain the principal features observed in the latter. As in
ordinary CP, each site of a lattice may be filled by one p
ticle or be empty. Each particle has its age,s. At each incre-
ment of time, all lattice sites are updated according to
following rules.~i! The probability for a particle of ages to
die at the next instant isps , irrespective of its environment
~ii ! The probability for a particle to survive until the nex
update is therefore 12ps . ~iii ! The probability that a particle
will be born at an empty site in the next instant
(1/nS)( i 51

nF qs( i ) , where nS is the total number of neares
neighbor sites, andnF is the total number of particles at suc
sites.s( i ) is the age of the particle at sitei. ~iv! The prob-
ability for an empty site to remain empty until the next u
date is therefore 12(1/nS)( i 51

nF qs( i ) . In this way we present
a natural generalization of the CP, introducing ag
dependent death and birth probabilities,ps and qs , respec-
tively.

Let us derive the mean-field equations, introducing
following quantities: the total number of particles at timet,
nt5(s50

t at,s , whereat,s is the number of particles of the
ages at time t. The initial condition isa 0,05n(0), where
n(0) is the initial number of particles.

FIG. 3. Temporal evolution of the particle densityn(t) for three
different values of p and a51. From top to below, p
50.65, 0.6667, and 0.75.
7-2



n

am

th

-

th

ug
n

is
er

io

e

n
n

g:

e

y

n;
the

an

g
lem
e

mes
e-
em
-

Eq.

t the
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Since the only possibility for an old particle (s.0) to
survive is process~ii !, the first equation isat11,s115(1
2ps)at,s , i.e., a fraction (12ps) of the particles with ages
survive. One may verify the solutionat,s5at2s,0)u50

s21(1
2pu) , where)u50

21 [1 by definition.
We demonstrate the derivation of the second equatio

the simplest case of only two nearest-neighboring sites~one
may show that other coordination numbers lead to the s
equation!. Particles are only created via process~iii !. Hence,

at11,05~12nt! (
s,u50

t

at,sat,u

qs1qu

2
12~12nt!

2(
s50

t

at,s

qs

2
.

~1!

Thus,

at11,05~12nt!(
s50

t

at,sqs . ~2!

The previous equations describe completely the ACP in
mean-field approach.

Applying (s50
t to our first mean-field equation one ob

tainsnt112nt5at11,02(s50
t psat,s . Taking Eq.~2! into ac-

count, we immediately obtain the equation generalizing
usual mean-field equation for the CP without aging,

nt112nt5(
s50

t

at,s@~12nt!qs2ps# . ~3!

Now we see that all quantities may be expressed thro
the at,0 , i.e., through the number of particles born at insta
t. The equation for this variable follows from Eq.~2!,

at11,05F12(
s50

t

at2s,0)
u50

s21

~12pu!G
3(

s50

t

at2s,0qs)
u50

s21

~12pu! . ~4!

Formally speaking, Eq.~4! together with the initial con-
dition, define the solution of our problem. But the problem
still too difficult for analytical treatment. Here we consid
only the simplest case ofq5const and ans-dependentps .
Let us pass to the continuous limit. Inserting the express
for at,s into the definition ofnt , we get the following closed-
integral equation for the total number of particles.

n~ t !5n~0!expF2E
0

t

ds p~s!G1qE
0

t

ds n~s!@12n~s!#

3expF2E
0

t2s

du p~u!G . ~5!

One may rewrite Eq.~3! in the following form: nt11

2nt5(q2pt)nt2qnt
21(s50

t (pt2ps)at,s . Inserting the ex-
pression forat,s and passing to the continuous limit, on
obtains
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]n~ t !

]t
5@q2p~ t !#n~ t !2qn2~ t !1qE

0

t

ds n~s!@12n~s!#

3@p~ t !2p~ t2s!#expF2E
0

t2s

du p~u!G . ~6!

Equation~6! may be also obtained by differentiating Eq.~5!.
If we set p5const, Eq.~6! reduces to the usual equatio
@2,3# for the CP without aging. We write out the know
results on linear relaxation for it for later comparison: ifp
.q, n(`)50 and n(t)} exp@2(p2q)t#; for p,q, n(`)
512p/q and n(t)2n(`)}exp@2(q2p)t#; and at p5q,
n(t)}1/t.

The reasonable dependences forp(s) and q(s), which
admit comparison with our simulations, are the followin
p(s) decreases gradually as the particle ages increases, and
q(s) increases withs increasing or is constant. Here, w
consider the annihilation probabilityp(s)5c(s1t0)2a,
where a is the aging exponent. The constantc plays the
same role as the parameterp21 in our simulations. One can
check that, in the particular case ofq50, i.e., when creation
of particles is absent, Eq.~5! is valid for any dimension, and
exact. In this case, at 0,a,1, n(t) approaches
zero, n(t)5n(0)exp@t0

12a/(12a)#exp@2(t1t0)
12a/(12a)#,

at a.1, n(t) quickly approaches a constant valuen(`)
5n(0)exp$2ct0

a21/(a21)%, and, for a51, n(t)
5n(0)t0 /(t1t0).

Equation~5! may be easily solved by iteration. One ma
start, e.g., fromn( i )(t)5n(0). The resulting solutionsn(t)
are very similar to those obtained by numerical simulatio
we do not present these curves here, but only describe
results of the direct analysis of Eq.~5!.

First of all, expanding Eq.~5! for small t one finds that

]n~0!

]t
5n~0!$q@12n~0!#2ct0

2a%. ~7!

@One may check that this relation is also valid for
s-dependentq(s) if one replacesq by q(0).] Hence,n(t)
may increase or decrease fromn(0) at short times dependin
on a particular relation between the constants of the prob
and on the initial condition. In principle, the sign of th
derivative is independent of the valuen(`). That leads to
the observed nonmonotonic behavior ofn(t).

The nonmonotonous behavior observed in some regi
can be intuitively understood regarding that in the very b
ginning the particles are by necessity young, so most of th
easily die off, but later the survivors turn to be nearly im
mortal, and the lattice will be filled up with old-timers.

Let us now consider the behavior ofn(t) for different
values ofa at long times.@Note that all the following as-
ymptotes may be obtained from the Laplace transform of
~5! linearized near the corresponding stationary state.#

Regime I, 0,a,1. The situation is very similar to the
CP without aging. There is a critical pointc* (a,q,t0) for
each value ofa andq. At c.c* (a,q,t0), n(`)50 andn(t)
has an exponentional approach to the stationary state. A
critical point, c5c* (a,q,t0), n(t) relaxes to zero by a
7-3
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power law, n(t)}1/t. At c,c* (a,q,t0), at long times,
n(t) approaches n(`).0 exponentially, n(t)2n(`)
} exp$2g(a,c,q,t0)t%. Here,g(a,c,q,t0) is zero at the critical
point, and also approaches zero whena approaches 1.

Regime II, a.1. For anyc and q, n(t) approaches 1
exponentially. The critical point~and scaling! are absent.
The reasons are the following. Ata.1, the kernel
exp$2*0

t duc(u1t0)
2a% quickly decreases to a constant valu

exp$2ct0
a21/(a21)%, as t grows, and one can substitute th

constant into Eq.~5!. Taking the derivative of Eq.~5! and
linearizing the resulting equation nearn(`)51 we get

12n~ t !} exp$2q exp@2ct0
2(a21)/~a21!# t%. ~8!

Regime III, a51, the most intriguing case. Several typ
of critical behavior are realized for different values ofc.

~a! For c,1 and anyq, n(`)51 and the long-time de
pendence is 12n(t)}t2(12c). Depending on the relation be
tween c,q, and t0 @see Eq.~7!#, n(t) exhibits this depen-
dence immediately or, on the contrary,n(t) first decreases
remains near zero for some time, and then very slowly
proaches 1. The kernel exp$2*0

t ds p(s)%5@(t1t0)/t0#
2c, so if

we demandn(t→`)→1 in Eq. ~5!, we immediately obtain
such a form for the asymptote.

~b! For c51 and anyq, n(`)51 and the long-time be
havior is 12n(t)}1/ln t.

~c! For 1,c,11qt0 , n(`)512(c21)/(qt0) and
n(t)2n(`)}t2c.

~d! At c511qt0 , n(`)50 andn(t)}1/t. The kernel is a
quickly decreasing function as compared withn(t), so the
reason for such behavior is the same as for the 1/t relaxation
at the critical point at 0<a,1.

~e! At c>11qt0 @note that the definition ofp(s) imposes
the additional restriction on possible values ofc and t0 : c
,t0], n(`)50 andn(t)}t2c.
s
e,

.

s.

04610
,
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The exponents 12c and c are nonuniversalsince c is
simply a coefficient in the definition of the annihilation pro
ability. Previously, nonuniversality was found in mode
with multiple absorbing states@5,6,9,23–25# and in the pro-
cess of spreading in media with memory@26#. Nevertheless,
the kind of nonuniversality observed here was not seen.

One should note that the results forRegime IIIwere ob-
tained only in the frame of mean-field theory. We did n
study the role of fluctuations, and cannot estimate their p
sible effect@27#. Our simulations do not let us fix the fina
stationary state~except for the casen(`)51), when the re-
laxation is slow, i.e., fora51. Note also that our mean-fiel
approach is based on parallel dynamics while a sequenti
one was used in the numerical simulations. This differen
however, seems to be not crucial for the CP with a sin
absorbing state.

In summary, we have studied the influence of power-l
aging on the contact process with a single absorbing st
The introduced type of aging accounts for, e.g., the grow
of the virus fitness. This is realized in the case of the H
infection because of the fast mutation rate due to its ra
replication of the virus. Of course, we do not model a re
course of the HIV infection but only consider consequen
of the most important factor, the growth of the virus fitne
Both simulation and mean-field theory reveal the nonmo
tonic character of the relaxation. In the marginal case o
unit-aging exponent, in the frame of the mean-field theo
we found that the relaxation of the particle density to t
stationary state proceeds by a power-law with a nonunive
exponent, or even slower, i.e., proportional to 1/lnt.
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